ResNet, which was proposed in 2015 by researchers at Microsoft Research introduced a new architecture called Residual Network.
The authors of ResNet paper claims that residual networks are easier to optimize, and can gain accuracy from considerably increased depth by reformulating the layers as learning residual functions with reference to the layer inputs.
Install pydlmodels
pip install pydlmodels
Steps to train the model
import libraries
from pydlmodels import *
import os
import glob
from torchvision.datasets import ImageFolder
import torchvision.transforms as tt
from torch.utils.data import DataLoader
Define data directory
data_dir = "address of your directory"
Check the classes in directory and number of samples in it
for i in os.listdir(data_dir):
print(i,len(os.listdir(data_dir+"/"+i)))
Storing data in dataset
dataset = ImageFolder(data_dir)
len(dataset)
Check all the available classes in dataset
dataset.classes
Image transformation
img_size = 224 #size of image
dataset = ImageFolder(data_dir, tt.Compose([tt.Resize(img_size),
tt.RandomCrop(img_size), tt.ToTensor()]))
Dividing data in train, validation and test
valid_pct = 0.2 #Validation data percentage
test_pct = 0.1 #test data percentage
val_size = int(valid_pct * len(dataset))
test_size = int(test_pct * len(dataset))
train_size = len(dataset) - val_size - test_size
train_ds , valid_ds , test_ds = torch.utils.data.random_split(dataset, [train_size, val_size, test_size])
print("Training data size = {0} ; Validation data Size = {1} and testing data size = {2}".format(len(train_ds) , len(valid_ds), len(test_ds)))
Defining batch size and loading data
batch_size = 50
train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True)
valid_dl = DataLoader(train_ds, batch_size=batch_size, num_workers=4, pin_memory=True)
test_dl = DataLoader(train_ds, batch_size=batch_size, num_workers=4, pin_memory=True)
Train the model
device = get_default_device()
train_dl = DeviceDataLoader(train_dl, device)
valid_dl = DeviceDataLoader(valid_dl, device)
model = to_device(ResNet9(3, len(dataset.classes)), device)
history = [evaluate(model, valid_dl)]
print(datetime.now())
history += fit(2, 0.001,model, train_dl, valid_dl, torch.optim.Adam)
print(datetime.now())
Test Model - Predict
def predict_image(img, model, classes):
# Convert to a batch of 1
xb = to_device(img.unsqueeze(0), device)
# Get predictions from model
yb = model(xb)
# Pick index with highest probability
_, preds = torch.max(yb, dim=1)
# Retrieve the class label
return classes[preds[0].item()]
def show_image_prediction(img, label):
plt.imshow(img.permute((1, 2, 0)))
pred = predict_image(img, model, dataset.classes)
print('Target:', dataset.classes[label])
print('Prediction:', pred)
show_image_prediction(*valid_ds[0]) # Feed transformed data
Комментарии